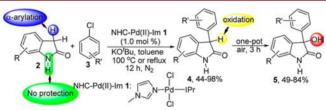
2013 Vol. 15, No. 6 1254–1257

N-Heterocyclic Carbene-Palladium(II)-1-Methylimidazole Complex Catalyzed α-Arylation of Oxindoles with Aryl Chlorides and Aerobic Oxidation of the Products in a One-Pot Procedure


Zheng-Kang Xiao, Hui-Ying Yin, and Li-Xiong Shao*

College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China

Shaolix@wzu.edu.cn

Received January 21, 2013

ABSTRACT

NHC-Pd(II)-Im complex 1 was found to be an effective catalyst for the α -arylation of unprotected oxindoles with aryl chlorides to give products 4 in 44–98% yields under a N_2 atmosphere. Furthermore, if the reactions were first performed under conditions identical to those for the α -arylation reaction for 12 h and then exposed to air for another 3 h, 3-aryl-3-hydroxy-2-oxindoles 5 can be obtained in 49–84% yields in a one-pot procedure.

During the past years, palladium-catalyzed α -arylation reactions of carbonyl compounds have become versatile methods for the formation of new carbon—carbon bonds. Among them, since its first discovery, the palladium-catalyzed direct α -arylation of oxindoles has proven to be an important reaction and has attracted considerable attention because the 3-substituted oxindole derivatives are frequently found in many natural products and compounds with biological activity. Meanwhile, the 3-substituted 3-hydroxy-oxindoles are also attractive due to

their prevalence in many alkaloid natural compounds and compounds with pharmaceutical and biological activity.⁴ However, the previously reported palladium-catalyzed α-arylation of oxindoles is still hampered as a practical method mainly due to the following reasons: (1) expensive, air-sensitive, electron-rich, and sterically hindered phosphine ligands are mandatory to facilitate such a transformation; (2) some require high catalyst loadings; (3) some require the preprotection of the free N-H of oxindoles. Therefore, development of an alternative method for the α-arylation of oxindoles still remains a challenge. During the past two decades, N-heterocyclic carbenes (NHCs) and their metal complexes have attracted much attention because of their significant advantages over their phosphine counterparts in air, thermal, and moisture stability. Consequently, NHC-Pd complexes have proven to be effective catalysts in the formation of carbon—carbon

⁽¹⁾ For recent reviews on the α -arylation reaction, please see: (a) Bellina, F.; Rossi, R. *Chem. Rev.* **2010**, *110*, 1082–1146. (b) Johansson, C. C. C.; Colacot, T. J. *Angew. Chem., Int. Ed.* **2010**, *49*, 676–707.

^{(2) (}a) Altman, R. A.; Hyde, A. M.; Huang, X.-H.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 9613–9620. (b) Durbin, M. J.; Willis, M. C. Org. Lett. 2008, 10, 1413–1415. (c) Taylor, A. M.; Altman, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 9900–9901. (d) Li, P.-F.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 6396–6400. (e) Yang, Y.-Y.; Moinodeen, F.; Chin, W.; Ma, T.; Jiang, Z.-Y.; Tan, C.-H. Org. Lett. 2012, 14, 4762–4765.

^{(3) (}a) Jensen, B. S. CNS Drug Rev. 2002, 8, 353–360. (b) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209–2219. (c) Lin, H.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 36–51. (d) Scheidt, K. A.; Galliford, C. V. Angew. Chem., Int. Ed. 2007, 46, 8748–8758.

⁽⁴⁾ For recent selected reviews, please see: (a) Trost, B. M.; Brennan, M. K. *Synthesis* **2009**, 3003–3025. (b) Peddibhotla, S. *Curr. Anal. Chem. Curr. Bioact. Compd.* **2009**, *5*, 20–38. (c) Badillo, J. J.; Hanhan, N. V.; Franz, A. K. *Curr. Opin. Drug Discovery Dev.* **2010**, *13*, 758–776.

and carbon-heteroatom bonds. Despite the progress of NHC-Pd complexes in organic synthesis, however, to the best of our knowledge, NHC-Pd complex catalyzed α-arylation of oxindoles has not been reported to date. Therefore, on the basis of our success in the well-defined and easily prepared N-heterocyclic carbene-Pd(II)-1methylimidazole [NHC-Pd(II)-Im] complex 1 catalyzed carbon-carbon and carbon-nitrogen bond formation reactions using arvl chlorides as the substrates.⁶ and as a continuation of our investigations on the α -arylation reaction of ketones, 6a herein, we wish to report the first example of phosphine-free, NHC-Pd complex catalyzed α-arylation of oxindoles with aryl chlorides and the further unprecedented aerobic oxidation of the corresponding products to 3-aryl-3-hydroxy-oxindoles in a one-pot procedure.

Using oxindole 2a (1.3 mmol) and chlorobenzene 3a (1.0 mmol) as the substrates, NHC-Pd(II)-Im complex 1 (1.0 mol %) as the catalyst, and toluene (2.0 mL) as the solvent, we initially compared a variety of bases for this reaction performed at 100 °C for 12 h. Typical results are shown in Table 1. It was found that the bases drastically affected the reaction. For example, a moderate yield (78%) of product 4a can be achieved when KO^tBu was used as the base (Table 1, entry 1), while, in the presence of all other bases such as NaO^tBu, Cs₂CO₃, NaOH, KOH, K₂CO₃, and Na₂CO₃, no reaction occurred (Table 1, entries 2–7). The solvents also drastically affected the reaction. For example, almost no reaction occurred when other solvents such as DMSO, DMF, THF, dioxane, and CH₃CN were used, respectively (Table 1, entries 8-12). It seems that the vield cannot be further increased even if the reaction was performed in refluxing toluene for 12 h (Table 1, entry 13).

With the optimal reaction conditions in hand, we then first explored the scope and limitations of this reaction using oxindole **2a** and various aryl chlorides **3** as the substrates under identical conditions (Table 2). As can be seen from Table 2, all reactions performed well to give the desired products **4** in moderate to high yields at 100 °C or reflux, respectively. Substituents on the aryl chlorides have some effect on the reactions. For example, sterically hindered substrates such as 2-methylphenyl chloride **3d** and 2,6-dimethylphenyl chloride **3e** can give the corresponding products **4d** and **4e** in very high yields, respectively (Table 2, entries 3 and 4); however, when 2-methoxyphenyl chloride **3i** was used as the substrate, only a moderate yield of product **4i** was obtained (Table 2, entry 8). Heteroaryl chlorides such as 3-pyridinyl chloride

Table 1. Optimization for the Reaction Conditions

entry^a	base	solvent	yield/ $\%^b$
1	$\mathrm{KO}^t\mathrm{Bu}$	toluene	78
2	$\mathrm{NaO}^t\mathrm{Bu}$	toluene	NR
3	$\mathrm{Cs_2CO_3}$	toluene	NR
4	NaOH	toluene	NR
5	KOH	toluene	NR
6	K_2CO_3	toluene	NR
7	Na_2CO_3	toluene	NR
8	$\mathrm{KO}^t\mathrm{Bu}$	DMSO	NR
9	$\mathrm{KO}^t\mathrm{Bu}$	DMF	NR
10	$\mathrm{KO}^t\mathrm{Bu}$	THF	<5
11	$\mathrm{KO}^t\mathrm{Bu}$	dioxane	<5
12	$\mathrm{KO}^t\mathrm{Bu}$	$\mathrm{CH_{3}CN}$	NR
13^c	$\mathrm{KO}^t\mathrm{Bu}$	toluene	79

 a Unless otherwise specified, all reactions were carried out using **2a** (1.3 mmol), **3a** (1.0 mmol), **1** (1.0 mol %), base (4.0 equiv), and solvent (2.0 mL) at 100 °C for 12 h. b Isolated yields. c The reaction was performed in refluxing toluene for 12 h.

Table 2. NHC-Pd(II)-Im 1 Catalyzed Reactions of Oxindole 2a with Aryl Chlorides 3

entry ^a	3 (R)	temp/°C	yield/% ^b
1	3b (4-Me)	reflux	4b ,80
2	3c (3-Me)	reflux	4c , 90
3	3d (2-Me)	reflux	4d , 95
4	3e (2,6-Me ₂)	reflux	4e , 98
5	3f (4-F)	100	4f , 79
6	3g (4-OMe)	100	4g , 86
7	3h (3-OMe)	100	4 h, 81
8	3i (2-OMe)	100	4i , 66
9	3j CI	reflux	4j , 87

 $[^]a$ All reactions were carried out using **2a** (0.65 mmol), **3** (0.5 mmol), **1** (1.0 mol %), KO'Bu (4.0 equiv), and toluene (1.0 mL) at 100 °C or refluxing for 12 h. b Isolated yields.

Org. Lett., Vol. 15, No. 6, 2013

⁽⁵⁾ For reviews on the NHC-Pd complexes catalyzed coupling reactions, please see: (a) Hillier, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.-L.; Nolan, S. P. *J. Organomet. Chem.* **2002**, *653*, 69–82. (b) Kantchev, E. A. B.; O'Brien, C. J.; Organ, M. G. *Angew. Chem., Int. Ed.* **2007**, *46*, 2768–2813. (c) Marion, N.; Nolan, S. P. *Acc. Chem. Res.* **2008**, *41*, 1440–1449. (d) Würtz, S.; Glorius, F. *Acc. Chem. Res.* **2008**, *41*, 1523–1533. (e) Fortman, G. C.; Nolan, S. P. *Chem. Soc. Rev.* **2011**, *40*, 5151–5169. (f) Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. *Angew. Chem., Int. Ed.* **2012**, *51*, 3314–3332.

⁽⁶⁾ For some selected examples, please see: (a) Xiao, Z.-K.; Shao, L.-X. *Synthesis* **2012**, 711–716. (b) Wang, Z.-Y.; Chen, G.-Q.; Shao, L.-X. *J. Org. Chem.* **2012**, 77, 6608–6614. (c) Chen, W.-X.; Shao, L.-X. *J. Org. Chem.* **2012**, 77, 9236–9236. (d) Lin, X.-F.; Li, Y.; Li, S.-Y.; Xiao, Z.-K.; Lu, J.-M. *Tetrahedron* **2012**, 68, 5806–5809.

Table 3. NHC-Pd(II)-Im 1 Catalyzed Reactions of Oxindoles 2 with Aryl Chlorides 3

entry ^a	2 (R')	3 (R)	temp/°C	yield/% ^b
1	2b (5-Me)	3a (H)	100	4k , 89
2	2b	3b (4-Me)	100	4I , 79
3	2b	3c (3-Me)	100	4m , 74
4	2b	3d (2-Me)	reflux	4n , 88
5	2b	3e (2,6-Me ₂)	reflux	4o , 89
6	2b	3f (4-F)	100	4p , 76
7	2b	3g (4-OMe)	100	4q , 85
8	2b	3h (3-OMe)	100	4r, 77
9 ^c	2b	3j Cl	reflux	4s , 75
10	2c (5-F)	3a ^{`N}	100	4t, 86
11	2c	3b	100	4u , 80
12	2c	3c	100	4v , 80
13	2c	3d	100	4w , 86
14	2c	3e	100	4x , 92
15	2c	3g	100	4z , 91
16	2c	3h	100	4aa , 78
17	2d (5,7-Me ₂)	3a	100	4 ab, 44
18	2d	3b	100	4 ac, 44
19	2d	3g	100	4ad , 55

^a Unless specified otherwise, all reactions were carried out using 2 (0.65 mmol), 3 (0.5 mmol), 1 (1.0 mol %), KO'Bu (4.0 equiv), and toluene (1.0 mL) at 100 °C or reflux for 12 h. ^b Isolated yields. ^c 2b/3j = 0.75/0.5 mmol.

3j was also a suitable partner to give product **4j** in 87% yield (Table 2, entry 9).

Furthermore, a variety of oxindoles 2 and aryl chlorides 3 were subjected to the optimal reaction conditions to test the generality. As can be seen from Table 3, all reactions also took place smoothly to give the desired products 4 in moderate to high yields. It seems that substituents on both of the substrates tested have no obvious effect in these cases. For instance, whether electron-rich or -poor groups were attached on the oxindoles 2 or aryl chlorides 3, all reactions worked well. Sterically hindered substituents such as 2-Me and 2,6-Me₂ on the aryl chlorides 3 did not significantly affect the reactions (Table 3, entries 4 and 5). However, such substituents on the oxindoles 2 affected the reactions to some extent. For instance, for the reactions involving 5,7-dimethyloxindole 2d, the corresponding products 4ab-4ad were formed only in 44-55\% yields, respectively, maybe due to the steric hindrance (Table 3, entries 17-19).

To our pleasure, when the reactions between oxindoles 2 and aryl chlorides 3 were first carried out under identical conditions shown in Tables 1-3 for 12 h and then the

Table 4. NHC-Pd(II)-Im 1 Catalyzed Reactions of Oxindoles 2 with Aryl Chlorides 3 To Form Products 5

entry ^a	2 (R')	3 (R)	yield/% ^b
1	2a (H)	3a (H)	5a , 72
2	2a	3b (4-Me)	5b , 80
3	2a	3c (3-Me)	5c , 71
4	2a	3d (2-Me)	5d , 49
5	2a	3f (4-F)	5e , 68
6	2a	3g (4-OMe)	5f , 84
7	2a	3h (3-OMe)	5g , 76
8	2a	3i (2-OMe)	5 h, 56
9	2a	3j CI	5 i, 72
Ü			01, 12
10	2b (5-Me)	3a ^N	5j , 73
11	2b	3b	5k, 74
12	2b	3c	5 I, 78
13	2b	3f	5m , 69
14	2b	3g	5n , 79
15	2b	3h	5o , 74
16	2c (5-F)	3a	5p , 62
17	2b	3b	5q , 73
18	2b	3c	5 r, 63

 a All reactions were carried out using **2** (0.65 mmol), **3** (0.5 mmol), **1** (1.0 mol %), KO'Bu (4.0 equiv), and toluene (1.0 mL) at 100 °C or reflux under N₂ for 12 h, and then the mixture was stirred under air for another 3 h. b Isolated yields.

reaction mixture was further exposed to air for another 3 h, 3-aryl-3-hydroxy oxindoles 5 can be formed in accepatable to good yields (Table 4). Substituents on the aryl chlorides have some effect on these reactions. For example, when 2-methylphenyl chloride 3d and 2-methoxyphenyl chloride 3i were used as the substrates, somewhat lower yields of products 5d (49%) and 5h (56%) were obtained, probably due to the steric hindrance of the substrates (Table 4, entries 4 and 8). Moreover, when 2,6-dimethylphenyl chloride 3e was utilized, only the normal α -arylated product 4o was obtained in 87% yield, and none its oxidized product was detected.

In conclusion, to the best of our knowledge, we report in this paper the first example of a phosphine-free, easily prepared and highly active NHC-Pd(II) complex catalyzed α -arylation of oxindoles with aryl chlorides. Furthermore, the normal α -arylated products can be further transformed to the oxidized products, the 3-aryl-3-hydroxy-oxindoles, under ambient conditions at room temperature in a one-pot procedure. Both reactions can tolerate a variety of substrates such as both oxindoles and aryl chlorides, which thus will enrich the chemistry of NHC-Pd(II) complexes

1256 Org. Lett., Vol. 15, No. 6, 2013

in organic synthesis and make the α -arylation reaction of oxindoles more practical.

Acknowledgment. Financial support from the Natural Science Foundation of Zhejiang Province (No. LY12B02012) is greatly appreciated.

Supporting Information Available. General procedure for the formation of compounds **4** and **5** and their ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.

Org. Lett., Vol. 15, No. 6, 2013